Architektur Of Trading System
Wie sieht eine algorithmische Handelssystemarchitektur aus? Es gibt eigentlich nur 3 Hauptblöcke in einem Algo-Handelssystem. 1. Market Data Handler (z. B. FAST-Handler) 2. Strategie-Modul (z. B. crossOver-Strategie) 3. Order Router (z. B. FIX Router) können Sie Risikotests entweder am Strategy Module oder dem Order Router Module oder beides hinzufügen. So lange Ihr Datenfluss ist korrekt, sollten Sie gut zu gehen. Denken Sie daran, dass Sie ein ATS für minimale Latenz entwickeln, und das Hinzufügen von mehr Ebenen oder Komplexität wird auf Kosten der Latenz kommen. Minimal ATS-Architektur Und wenn Sie die Glocken und Pfeifen hinzufügen, würde es wie die folgenden aussehen: Wenn Sie auch an der Nitty-Gritty der Umsetzung der oben genannten Architektur interessiert sind, sollten Sie die folgenden Dinge im Auge behalten. Vermeiden Sie locksmutexes. Wenn Sie es verwenden müssen, versuchen Sie, sie durch lockless Strukturen mit Atomkernen zu ersetzen. Es gibt mehrere Bibliotheken für locklose Datenstrukturen (z. B. libcds, Concurrency-Kit usw.). C-11 unterstützt std :: atomar. Und Sie sollten danach streben, sie zu benutzen. Vermeiden Sie, was in QuickFIX getan wird. Seine geschrieben für Sicherheitselektivität Wiederverwendbarkeit als Objekt (Sperren) Erstellung und Vernichtung wird für jeden Aufruf einer Nachricht an den Router durchgeführt. Sicherlich keine Möglichkeit, eine Latenz sensible Code schreiben. Keine Laufzeitspeicherbelegung. Laufzeitpfad sollte maßgeschneiderte und sperrenfreie Speicherverwaltung mit vorab zugewiesenem Speicherpool verwenden. Die gesamte Initialisierung kann in Konstruktoren durchgeführt werden. Feste Verbindung. Threading-Modell, IO-Modell und Speicher-Management sollte so konzipiert, zusammen zu arbeiten, um eine optimale Gesamtleistung zu erzielen. Dies geht gegen das OOP-Konzept der losen Kopplung, aber es ist notwendig, um Laufzeitkosten des dynamischen Polymorphismus zu vermeiden. Verwenden Sie Vorlagen. In der gleichen Vene, würde ich auch vorschlagen, dass Sie auf C-Templatierung, um Flexibilität des Codes zu erreichen. OSHardware-Optimierung: Schließlich sollten Sie mit Linux RT Kernel und Solarflare Netzwerkkarte mit OpenOnLoad Treiber für die Erreichung minimale Latenz arbeiten. Können Sie weiter schauen, um die CPU zu isolieren und führen Sie Ihr Programm auf, dass bestimmte Kern. Und schließlich die öffentliche API, die Sie benötigen, um strategischen Entwicklern auszusetzen. Ich möchte, dass dies die minimale Menge, die die gesamte Komplexität dieser bestimmten Austauschstation verkapseln würde. Class OrderRowOrd (OrderInfo) 0 virtual bool sendRplOrd (OrderInfo) 0 virtuelles bool sendCxlOrd (OrderInfo) 0 virtualBut bedeutet dies, dass die OrderInfo-Klasse ALLE Angaben benötigen, die für den destinationexchange erforderlich sind. In der Regel erfordert der Austausch die gleiche Art von Informationen, aber wie Sie entlang gehen und unterstützen mehr AustauscheDestinationen würden Sie sich hinzufügen, mehr Variablen in dieser Klasse. Im Folgenden sind die wichtigen Fragen, die Sie sich stellen müssen: 1. Multi-Prozess-Architektur oder Multi-Thread-Architektur. Ob ein monolithischer Prozess mit mehreren Threads zu bauen, oder schreiben Sie mehrere Prozesse. Die Kosten für mehrere Prozesse ist die Nachricht übergeben Latenz, während die Kosten für mehrere threaded einzigen Prozess ist, dass jeder Fehler kann das gesamte System zu senken. 2. Nachrichtenübergabe: Während Sie aus einer Vielzahl von Optionen wählen können, sind Sie durch Latenzbetrachtung eingeschränkt. Am schnellsten IPC wäre Shared Memory, aber dann, wie würden Sie tun, die Synchronisation verbringen einige Zeit mit diesen beiden Fragen, weil sie den Baustein, auf dem Ihre Architektur steht. Bearbeiten: FIX und FAST Bezüglich populäres Standardprotokoll ist FIX zum Senden von Aufträgen und FAST für Marktdaten. Having said, dass die meisten Börsen haben ihre eigene native Protokoll, das schneller als FIX ist, weil FIX ist in der Regel auf der Oberseite ihres nativen Protokolls implementiert. Aber sie unterstützen immer noch FIX erhöht die Geschwindigkeit der Bereitstellung. Auf der anderen Seite, während FIX von den meisten Börsen übernommen wird, genießt FAST nicht so viel Akzeptanz. Wenn überhaupt, würde es nur eine Handvoll Austausch geben. Die meisten von ihnen senden entweder über FIX selbst (niedrige Latenzzeit) oder verwenden Sie ihre eigenen nativen binären Protokoll. z. B. In Indien, NSE, BSE und MCXMCXSX, alle drei Börsen gibt Ihnen FIX-Protokoll zusätzlich zu nativen Protokoll, aber nur BSE gibt Ihnen FAST für Marktdaten. Und das ist auch von FAST auf native mit Einführung von EOBI. Können Sie die gleiche Sache an andere Börsen extrapolieren. Wie John erwähnt, ist OMS der Crux von jeder Handelsplattform und Sie sollten von der Erforschung darüber zu starten. Sie müssen Zeit verbringen, um Ihre Handelslebenszyklus, Ereignisse und Eigenschaften zu bestimmen, die Sie auf dem OMS einbetten möchten und die, die Sie Ihre Algo-Maschine behandeln möchten. Metcetera bietet eine Open-Source-OMS, ich haven039t verwendet es persönlich aber it039s einer der wenigen auf dem Markt. Die nächste Sache, die Sie betrachten sollte, ist die Bereitstellung einer Schnittstelle zu Quelldaten in und schieben Sie es aus. Dies ist für ein Kundenauftragseingabesystem, zum der Auftragsdetails zu werfen und Algo-Maschine, um sie zu versorgen. Viele Sell Side OMS039s verwenden eine Kombination von proprietären Programmen in JavaC mit FIX geschrieben. FIX-Protokoll ermöglicht es Ihnen, Echtzeit über Systeme in einem vereinfachten amp-vordefinierten Nachrichtenformat zu kommunizieren, das von der FIX-Protokollgemeinschaft festgelegt wird. Gehen Sie zu der FIX-Protokoll-Organisation gt Homepage, um mehr darüber zu lesen. Betrachtet auch Open Source FIX Engine. Eine Open-Source-Implementierung der FIX-Engine. Als nächstes kommt eine Marktdaten-Schnittstelle, um Echtzeit-Zeitsicherheits-Marktinformationen zu liefern, Daten, die von HighLowOpenClose zu Best BidBest Ask, Total gehandeltes Volumen, Letzter Preis, Letztes Volumen, Bid-Anführungszeichen, Ask-Anführungszeichen usw. reichen Strategie, die Sie implementieren möchten. Ich glaube, Interactive Broker bietet einen Echtzeit-Daten-Feed über FIX. Exchange-Konnektivität ist als nächstes, wo Ihr Algo interpretiert die Signale, erstellen Sie eine Bestellung und Routen zu einem Exchange oder ECN. Entwickeln sie im eigenen Haus könnte hart sein, wie Sie benötigen, um auszutauschen Exchange-Mitgliedschaft, zertifizieren Sie Ihre Plattform und zahlen einen regulären Mitgliedsbeitrag. Ein billiger Weg ist, eine Broker-API (wie IB) zu verwenden und Route der Reihenfolge durch sie. Historische Daten sind ebenso von wesentlicher Bedeutung, wie man das aktuelle Marktverhalten mit seinen historischen Werten vergleichen möchte. Parameter wie durchschnittlicher Spread, VWAP-Profile, durchschnittliches Tagesvolumen usw. können erforderlich sein, um die Entscheidungsfindung zu beeinflussen. Sie können es auf Datenbank (bevorzugt), aber wenn Geschwindigkeit der Essenz dann laden Sie es auf dem Server-Cache, wenn Sie Ihr Programm beginnen. Sobald Ihre Peripherie-Systeme eingerichtet sind, können Sie die Entwicklung Ihrer Algo-Programm, wie Sie es funktionieren wollen. Diese grundlegende Infrastruktur ermöglicht es Ihnen, einen übergeordneten Algo-Auftrag einzugeben, Marktdaten zu lesen, auf die Signale zu reagieren, aber untergeordnete Aufträge zu generieren und sie auf das Austauschauftragsbuch und die historischen Daten zu setzen, um die Entscheidungsfindung zu beeinflussen. Das OMS hält die Verknüpfung zwischen der übergeordneten Amp-Kinderreihenfolge, deren Echtzeitstatus und Aktualisierungen durch die Algo - oder Exchange-Konnektivitätsplattform. Was Sie innerhalb des Algo implementieren möchten, ist ganz und gar Ihnen überlassen. Traderbodenarchitektur Trading Floor Architecture Executive Übersicht Erhöhte Konkurrenz, ein höheres Marktdatenvolumen und neue regulatorische Anforderungen sind einige der treibenden Kräfte hinter Branchenveränderungen. Unternehmen versuchen, ihre Wettbewerbsfähigkeit durch eine ständige Änderung ihrer Handelsstrategien und die Erhöhung der Geschwindigkeit des Handels. Eine tragfähige Architektur muss die neuesten Technologien aus Netzwerk - und Anwendungsdomänen beinhalten. Es muss modular sein, um einen überschaubaren Weg zu schaffen, um jede Komponente mit minimaler Unterbrechung des Gesamtsystems zu entwickeln. Die von diesem Papier vorgeschlagene Architektur basiert daher auf einem Dienstleistungsrahmen. Wir untersuchen Dienste wie Ultra-Latenz-Messaging, Latenzüberwachung, Multicast, Computing, Speicherung, Daten - und Anwendungsvirtualisierung, Trading-Resiliency, Handelsmobilität und Thin Client. Die Lösung für die komplexen Anforderungen der Handelsplattform der nächsten Generation muss mit einer ganzheitlichen Denkweise aufgebaut werden, die die Grenzen traditioneller Silos wie Business und Technologie oder Anwendungen und Vernetzung überschreitet. Ziel dieses Dokuments ist es, Leitlinien für den Aufbau einer Handelsplattform mit extrem niedriger Latenzzeit zur Verfügung zu stellen, während der Rohdurchsatz und die Nachrichtenrate sowohl für Marktdaten als auch für FIX-Handelsaufträge optimiert werden. Um dies zu erreichen, schlagen wir die folgenden Latenzreduktionstechnologien vor: High-Speed-InterconnectInfiniBand oder 10 Gbit / s-Konnektivität für das Handels-Cluster Hochgeschwindigkeits-Messaging-Bus Anwendungsbeschleunigung über RDMA ohne Anwendung Recoder Echtzeit-Latenzüberwachung und - umkehrung von Trading Traffic auf den Pfad mit minimaler Latenz Branchentrends und Herausforderungen Trading-Architekturen der nächsten Generation müssen auf erhöhte Anforderungen an Geschwindigkeit, Volumen und Effizienz reagieren. Zum Beispiel wird das Volumen der Optionen Marktdaten voraussichtlich verdoppeln, nachdem die Einführung von Optionen Penny-Handel im Jahr 2007. Es gibt auch regulatorische Anforderungen für die beste Ausführung, die Handhabung Preisaktualisierungen mit Raten, die 1M msgsec Ansatz. Für den Austausch. Sie benötigen auch Sichtbarkeit in die Frische der Daten und Beweis, dass der Client die bestmögliche Ausführung erhalten hat. Kurzfristig sind Geschwindigkeit von Handel und Innovation die wichtigsten Unterscheidungsmerkmale. Eine zunehmende Anzahl von Trades werden durch algorithmische Handelsanwendungen behandelt, die so nah wie möglich an den Handelsausführungsort gebracht werden. Eine Herausforderung mit diesen quotblack-boxquot Handelsmotoren ist, dass sie die Volumenzunahme erhöhen, indem sie Aufträge nur annullieren und sie zurücksenden. Die Ursache für dieses Verhalten ist mangelnde Transparenz in die Veranstaltungsort bietet die beste Ausführung. Der menschliche Händler ist jetzt ein quotfinancial Ingenieur, ein quotquantquot (quantitativer Analytiker) mit Programmierungfähigkeiten, die handelnmodelle on the fly einstellen können. Unternehmen entwickeln neue Finanzinstrumente wie Wetterderivate oder Cross-Asset-Klassenhandel und müssen die neuen Applikationen schnell und skalierbar einsetzen. Langfristig sollte die Konkurrenzdifferenzierung nicht nur aus der Analyse, sondern auch aus der Analyse resultieren. Die Star-Trader von morgen übernehmen Risiken, erreichen wahre Kundeneinblicke und konsequent den Markt (Quelle IBM: www-935.ibmservicesusimcpdfge510-6270-trader. pdf). Die Business-Resilienz ist seit dem 11. September 2001 ein wichtiges Anliegen von Handelsunternehmen. Lösungen in diesem Bereich reichen von redundanten Rechenzentren, die sich in verschiedenen Regionen befinden und an mehrere Handelsplätze angeschlossen sind, an virtuelle Händlerlösungen, die Power Traders die meisten Funktionalitäten eines Handelsraums anbieten An einem entfernten Ort. Die Finanzdienstleistungsbranche zählt zu den anspruchsvollsten IT-Anforderungen. Die Branche erlebt einen architektonischen Wandel hin zu Services-Oriented Architecture (SOA), Web Services und Virtualisierung von IT-Ressourcen. SOA nutzt die Erhöhung der Netzwerkgeschwindigkeit, um eine dynamische Bindung und Virtualisierung von Softwarekomponenten zu ermöglichen. Dies ermöglicht die Erstellung neuer Anwendungen, ohne die Investitionen in bestehende Systeme und Infrastrukturen zu verlieren. Das Konzept hat das Potenzial, die Integrationsfähigkeit zu revolutionieren, was die Komplexität und die Kosten einer solchen Integration erheblich reduziert (gigaspacesdownloadMerrilLynchGigaSpacesWP. pdf). Ein weiterer Trend ist die Konsolidierung von Servern in Rechenzentrums-Serverfarmen, während Händler-Desks nur KVM-Erweiterungen und ultradünne Clients (z. B. SunRay - und HP-Blade-Lösungen) haben. Hochgeschwindigkeits-Metro Area Networks ermöglichen es, Marktdaten zwischen verschiedenen Standorten zu multicastieren und so die Virtualisierung des Handelsraums zu ermöglichen. High-Level-Architektur Abbildung 1 zeigt die Architektur einer Handelsumgebung auf hohem Niveau. Die Ticker-Anlage und die algorithmischen Trading Engines befinden sich im Hochleistungs-Trading-Cluster im Rechenzentrum der Firma oder an der Börse. Die menschlichen Händler befinden sich im Bereich der Endbenutzeranwendungen. Funktionell gibt es zwei Anwendungskomponenten im Enterprise-Trading-Umfeld, Verleger und Abonnenten. Der Messaging-Bus stellt den Kommunikationsweg zwischen Publishern und Abonnenten zur Verfügung. Es gibt zwei Arten von Traffic-spezifisch für ein Handelsumfeld: Market DataCarries Preisinformationen für Finanzinstrumente, Nachrichten und andere wertschöpfende Informationen wie Analytics. Es ist unidirektional und sehr Latenz empfindlich, in der Regel über UDP Multicast geliefert. Es wird in updatessec gemessen. Und in Mbps. Marktdatenströme von einem oder mehreren externen Feeds, die von Marktdatenanbietern wie Börsen, Datenaggregatoren und ECNs kommen. Jeder Anbieter hat sein eigenes Marktdatenformat. Die Daten werden von Feed-Handlern, spezialisierten Anwendungen, die die Daten normalisieren und reinigen, empfangen und dann an Datenkonsumenten, wie z. B. Preismodule, algorithmische Handelsanwendungen oder menschliche Händler, gesendet. Sell-Side-Unternehmen senden auch die Marktdaten an ihre Kunden, Buy-Side-Firmen wie Investmentfonds, Hedgefonds und andere Vermögensverwalter. Einige Buy-Side-Unternehmen können entscheiden, Direkt-Feeds von den Austausch, Reduzierung der Latenz zu erhalten. Abbildung 1 Trading-Architektur für einen Buy SideSell Side Firm Es gibt keine Industrie-Standard für Markt-Daten-Formate. Jeder Austausch hat ihr eigenes Format. Finanzdienstleister wie Reuters und Bloomberg aggregieren verschiedene Quellen von Marktdaten, normalisieren sie und fügen Neuigkeiten oder Analysen hinzu. Beispiele für konsolidierte Feeds sind RDF (Reuters Data Feed), RWF (Reuters Wire Format) und Bloomberg Professional Services Data. Um Marktdaten mit geringerer Latenz zu liefern, haben beide Anbieter Echtzeit-Marktdaten-Feeds veröffentlicht, die weniger verarbeitet und weniger analytisch sind: Bloomberg B-PipeWith B-Pipe, Bloomberg dekoppelt ihre Marktdaten-Feeds von ihrer Vertriebsplattform aus Ist nicht erforderlich für get B-Pipe. Wombat und Reuters Feed-Handler haben angekündigt, Unterstützung für B-Pipe. Ein Unternehmen kann entscheiden, Feeds direkt von einem Austausch zu empfangen, um die Latenz zu reduzieren. Die Verstärkung der Übertragungsgeschwindigkeit kann zwischen 150 Millisekunden bis 500 Millisekunden liegen. Diese Feeds sind komplexer und teurer und die Firma muss ihre eigene Ticker-Anlage aufbauen und pflegen (financetechfeaturedshowArticle. jhtmlarticleID60404306). Trading OrdersThis Art von Traffic trägt die tatsächlichen Trades. Es ist bidirektional und sehr latenzempfindlich. Es wird in messagessec gemessen. Und Mbps. Die Aufträge stammen von einer Kaufseite oder Verkaufsseite Firma und werden an Handelsplätze wie eine Börse oder ECN zur Ausführung gesendet. Das häufigste Format für den Auftragstransport ist FIX (Financial Information eXchangefixprotocol. org). Die Applikationen, die FIX-Meldungen verarbeiten, heißen FIX-Engines und operieren mit Order Management Systemen (OMS). Eine Optimierung für FIX heißt FAST (Fix Adapted for Streaming), das ein Komprimierungsschema verwendet, um die Nachrichtenlänge zu reduzieren und die Latenz zu reduzieren. FAST ist mehr auf die Bereitstellung von Marktdaten ausgerichtet und hat das Potenzial, ein Standard zu werden. FAST kann auch als Komprimierungsschema für proprietäre Marktdatenformate verwendet werden. Um die Latenz zu reduzieren, können sich Unternehmen entscheiden, Direct Market Access (DMA) zu errichten. DMA ist der automatisierte Prozess, um einen Wertpapierauftrag direkt an einen Ausführungsort zu leiten und so die Intervention durch einen Dritten zu vermeiden (towergroupresearchcontentglossary. jsppage1ampglossaryId383). DMA erfordert eine direkte Verbindung zum Ausführungsort. Der Messaging-Bus ist Middleware-Software von Anbietern wie Tibco, 29West, Reuters RMDS oder einer Open-Source-Plattform wie AMQP. Der Messaging-Bus verwendet einen zuverlässigen Mechanismus, um Nachrichten zu übermitteln. Der Transport kann über TCPIP (TibcoEMS, 29West, RMDS und AMQP) oder UDPmulticast (TibcoRV, 29West und RMDS) erfolgen. Ein wichtiges Konzept in der Nachrichtenverteilung ist der quottopische Stream, der eine Teilmenge von Marktdaten ist, die durch Kriterien wie Ticker-Symbol, Industrie oder einen bestimmten Korb von Finanzinstrumenten definiert sind. Abonnenten werden Themengruppen zugeordnet, die einem oder mehreren Unterthemen zugeordnet sind, um nur die relevanten Informationen zu erhalten. In der Vergangenheit erhielten alle Händler alle Marktdaten. Bei den derzeitigen Verkehrsmengen wäre dies suboptimal. Das Netzwerk spielt eine wichtige Rolle im Handelsumfeld. Die Marktdaten werden zum Handelsplatz getragen, wo sich die menschlichen Händler über ein Hochgeschwindigkeitsnetzwerk des Campus oder Metro Area befinden. Hohe Verfügbarkeit und niedrige Latenzzeiten sowie hoher Durchsatz sind die wichtigsten Kennzahlen. Die leistungsstarke Handelsumgebung verfügt über die meisten Komponenten in der Data Center-Serverfarm. Um die Latenz zu minimieren, müssen sich die algorithmischen Trading-Engines in der Nähe von Feed-Handlern, FIX-Engines und Order-Management-Systemen befinden. Ein alternatives Bereitstellungsmodell weist die algorithmischen Handelssysteme auf, die sich an einer Vermittlungsstelle oder einem Dienstanbieter mit schneller Konnektivität zu mehreren Vermittlungsstellen befinden. Bereitstellungsmodelle Es gibt zwei Bereitstellungsmodelle für eine leistungsfähige Handelsplattform. Die Unternehmen haben die Wahl zwischen einem Rechenzentrum der Handelsgesellschaft (Abbildung 2) Dies ist das traditionelle Modell, in dem eine vollwertige Handelsplattform von der Firma entwickelt und betrieben wird, die über Kommunikationsverbindungen zu allen Handelsplätzen verfügt. Latenz variiert mit der Geschwindigkeit der Links und die Anzahl der Hops zwischen der Firma und den Veranstaltungsorten. Abbildung 2 Traditionelles Bereitstellungsmodell Koordination am Handelsplatz (Börsen, Finanzdienstleister (FSP)) (Abbildung 3) Das Handelsunternehmen entfaltet seine automatisierte Handelsplattform so nah wie möglich an den Ausführungsorten, um die Latenz zu minimieren. Abbildung 3 Verteilungsmodell-Services-orientierte Trading-Architektur Wir schlagen ein dienstleistungsorientiertes Framework für den Aufbau der Handelsarchitektur der nächsten Generation vor. Dieser Ansatz bietet einen konzeptionellen Rahmen und einen Implementierungspfad, der auf Modularisierung und Minimierung von Abhängigkeiten beruht. Dieses Framework stellt Unternehmen eine Methodologie zur Verfügung, um ihren gegenwärtigen Zustand in Bezug auf Dienstleistungen zu bewerten Priorisierung der Dienste basierend auf ihrem Wert für das Unternehmen Entwickeln Sie die Handelsplattform in den gewünschten Zustand mit einem modularen Ansatz Die Hochleistungs-Handelsarchitektur setzt auf die folgenden Dienstleistungen, wie Definiert durch das in Abbildung 4 dargestellte Service-Architektur-Framework. Abbildung 4 Service Architektur Framework für High Performance Trading Ultra-Low Latency Messaging Service Dieser Service wird von dem Messaging-Bus bereitgestellt, der ein Softwaresystem ist, Viele Anwendungen. Das System besteht aus: Ein Satz von vordefinierten Nachrichtenschemata Ein Satz von gemeinsamen Befehlsnachrichten Eine gemeinsame Anwendungsinfrastruktur zum Senden der Nachrichten an Empfänger. Die gemeinsame Infrastruktur kann auf einem Message-Broker oder einem publishsubscribe-Modell basieren. Die wichtigsten Anforderungen für den Messaging-Bus der nächsten Generation sind (Quelle 29West): Niedrigstmögliche Latenzzeit (zB weniger als 100 Mikrosekunden) Stabilität unter hoher Last (zB mehr als 1,4 Millionen msg.) Steuerung und Flexibilität (Ratensteuerung und konfigurierbare Transporte) Sind Bemühungen in der Industrie, den Messaging-Bus zu standardisieren. Advanced Message Queuing Protocol (AMQP) ist ein Beispiel für einen offenen Standard, der von J. P. Morgan Chase unterstützt wird und von einer Gruppe von Anbietern wie Cisco, Envoy Technologies, Red Hat, TWIST Process Innovations, Iona, 29West und iMatix unterstützt wird. Zwei der Hauptziele sind, einen einfacheren Weg zur Interoperabilität für Anwendungen bereitzustellen, die auf verschiedenen Plattformen und Modularität geschrieben sind, so dass die Middleware einfach entwickelt werden kann. Ganz allgemein ist ein AMQP-Server analog zu einem E-Mail-Server, wobei jede Vermittlungsstelle als Nachrichtenübertragungsagent und jede Nachrichtenwarteschlange als Mailbox fungiert. Die Bindungen definieren die Routingtabellen in jedem Transferagent. Publisher senden Nachrichten an einzelne Übertragungsagenten, die dann die Nachrichten in Postfächer weiterleiten. Verbraucher nehmen Nachrichten aus Postfächern, die ein leistungsfähiges und flexibles Modell schafft, das einfach ist (Quelle: amqp. careikiwikitiki-index. phppageOpenApproachWhyAMQP). Latency Monitoring Service Die wichtigsten Voraussetzungen für diesen Service sind: Granularität der Messungen in Millisekunden Echtzeit-Sichtbarkeit ohne Hinzufügung von Latenzzeiten für den Traffic Traffic Fähigkeit, die Latenz der Anwendungsverarbeitung von der Netzwerk-Transit-Latenz zu unterscheiden Fähigkeit, hohe Nachrichtenraten zu behandeln Bereitstellung einer programmgesteuerten Schnittstelle für Um Latenzdaten zu empfangen, so dass sich algorithmische Trading Engines an sich ändernde Bedingungen anpassen können. Korrelieren von Netzwerkereignissen mit Anwendungsereignissen für Fehlerbehandlungszwecke Latenzzeit kann als das Zeitintervall definiert werden, zwischen dem eine Trade Order gesendet wird, und wenn dieselbe Reihenfolge quittiert und gehandelt wird Von der empfangenden Partei. Die Lösung der Latenzproblematik ist ein komplexes Problem, das einen ganzheitlichen Ansatz erfordert, der alle Latenzquellen identifiziert und verschiedene Technologien auf verschiedenen Ebenen des Systems anwendet. Fig. 5 zeigt die Vielfalt der Komponenten, die Latenzzeiten an jeder Schicht des OSI-Stapels einbringen können. Es bildet auch jede Quelle der Latenz mit einer möglichen Lösung und einer Überwachungslösung ab. Dieser mehrschichtige Ansatz bietet Unternehmen eine strukturierte Möglichkeit, das Latenzproblem anzugreifen, wobei jede Komponente als Dienstleistung betrachtet und konsequent über das Unternehmen hinweg behandelt werden kann. Eine genaue Messung des dynamischen Zustands dieses Zeitintervalls über alternative Routen und Ziele kann bei taktischen Handelsentscheidungen eine große Hilfe sein. Die Fähigkeit, die genaue Lage der Verzögerungen zu identifizieren, sei es im Kundennetznetz, auf dem zentralen Verarbeitungsknoten oder auf der Transaktionsanwendungsebene, bestimmt entscheidend die Fähigkeit von Dienstanbietern, ihre vertraglichen Vereinbarungen auf Handelsniveau (SLAs) zu erfüllen. Für Buy-Side - und Sell-Side-Formulare sowie für Marktdaten-Syndikatoren erfolgt die schnelle Identifikation und Beseitigung von Engpässen direkt in verbesserte Handels - und Ertragsmöglichkeiten. Abbildung 5 Latenzmanagement-Architektur Cisco Low-Latency-Monitoring-Tools Traditionelle Netzwerk-Monitoring-Tools arbeiten mit Minuten oder Sekunden Granularität. Handelsplattformen der nächsten Generation, insbesondere solche, die den algorithmischen Handel unterstützen, erfordern Latenzen von weniger als 5 ms und extrem niedrige Paketverluste. Auf einem Gigabit-LAN kann ein 100-ms-Microburst verursachen, dass 10.000 Transaktionen verloren gehen oder übermäßig verzögert werden. Cisco bietet seinen Kunden eine Auswahl an Tools, um die Latenzzeiten in einer Handelsumgebung zu messen: Bandbreiten-Qualitätsmanager (BQM) (OEM von Corvil) Cisco AON-basierte Finanzdienstleistungs-Latenzüberwachungslösung (FSMS) Bandbreiten-Qualitätsmanager Bandwidth Quality Manager (BQM) 4.0 ist Ein Netzwerk-Performance-Management-Produkt der nächsten Generation, das es Kunden ermöglicht, ihr Netzwerk auf kontrollierte Latenz - und Verlustleistung zu überwachen und bereitzustellen. Während BQM nicht ausschließlich auf Handelsnetze ausgerichtet ist, ist die Mikrosekundenvisibilität in Kombination mit intelligenten Funktionen zur Bandbreitenoptimierung ideal für diese anspruchsvollen Umgebungen. Cisco BQM 4.0 implementiert eine breite Palette von patentierten und zum Patent angemeldeten Verkehrs - und Netzwerkanalysetechnologien, die dem Anwender eine noch nie dagewesene Sichtbarkeit und ein Verständnis der Optimierung des Netzwerks für maximale Anwendungsleistung bieten. Cisco BQM wird nun auf der Produktfamilie der Cisco Application Deployment Engine (ADE) unterstützt. Die Cisco ADE-Produktfamilie ist die Plattform für Cisco Network Management-Anwendungen. BQM-Vorteile Die Cisco BQM-Mikrosichtbarkeit ist die Fähigkeit, Latenz, Jitter und Verluste, die Verkehrsereignisse verursachen, zu detektieren, zu messen und zu analysieren, bis hin zu Mikrosekundenebenen mit einer Paketauflösung. Dadurch kann Cisco BQM die Auswirkungen von Verkehrsereignissen auf Netzwerklatenz, Jitter und Verlust erkennen und bestimmen. Kritisch für Handelsumgebungen ist, dass BQM Latenz-, Verlust - und Jitter-Messungen einseitig für TCP - und UDP - (Multicast-) Datenverkehr unterstützen kann. Das bedeutet, dass sie nahtlos sowohl für Trading - als auch für Marktdaten-Feeds berichtet. BQM erlaubt es dem Benutzer, einen umfassenden Satz von Schwellenwerten (gegen Microburst-Aktivität, Latenz, Verlust, Jitter, Auslastung usw.) auf allen Schnittstellen festzulegen. BQM betreibt dann eine Hintergrundwalzenpaketaufnahme. Wenn eine Schwellenverletzung oder ein anderes potentielles Leistungsverschlechterungsereignis auftritt, löst sie Cisco BQM aus, um die Paketaufnahme zur späteren Analyse auf dem Datenträger zu speichern. Dies ermöglicht dem Benutzer, den Anwendungsverkehr, der von der Leistungsverschlechterung betroffen war, zu untersuchen (quiethe victimsquot) und den Verkehr, der die Leistungsverschlechterung verursacht hat (quich der culpritsquot). Dies kann die Zeit für die Diagnose und Behebung von Netzwerkleistungsproblemen erheblich verkürzen. BQM ist auch in der Lage, detaillierte Empfehlungen für die Bereitstellung von Empfehlungen für die Bandbreite und Qualität der Dienste (QoS) zu liefern, die der Benutzer direkt anwenden kann, um die gewünschte Netzwerkleistung zu erreichen. BQM-Messungen veranschaulicht Um den Unterschied zwischen einigen der herkömmlicheren Messtechniken und der Sichtbarkeit von BQM zu verstehen, können wir einige Vergleichsgrafiken betrachten. Im ersten Satz von Graphen (Abbildung 6 und Abbildung 7) sehen wir den Unterschied zwischen der Latenzzeit, die mit dem BQMs passivem Netzwerkqualitätsmonitor (PNQM) gemessen wird, und der Latenz, die durch die Injektion von Ping-Paketen alle 1 Sekunde in den Verkehrsstrom gemessen wird. In Abbildung 6 sehen wir die Latenz, die von 1-Sekunden-ICMP-Ping-Paketen für den realen Netzwerkverkehr berichtet wird (sie wird durch 2 geteilt, um eine Schätzung für die Einwegverzögerung zu geben). Es zeigt die Verzögerung bequem unter etwa 5ms für fast die ganze Zeit. Abbildung 6 Latenz, die von 1-Sekunden-ICMP-Ping-Paketen für realen Netzwerkverkehr gemeldet wird In Abbildung 7. sehen wir die Latenz, die PNQM für denselben Traffic zur gleichen Zeit gemeldet hat. Hier sehen wir, dass wir durch die Messung der Einweg-Latenz der eigentlichen Anwendungspakete ein völlig anderes Bild erhalten. Hier wird die Latenz etwa 20 ms schweben, mit gelegentlichen Bursts weit höher. Die Erklärung ist, dass, weil ping sendet Pakete nur jede Sekunde, es ist völlig fehlt die meisten der Anwendungsverkehr Latenz. Tatsächlich zeigen die Ping-Ergebnisse typischerweise nur die Ausbreitungsverzögerung für die Rundreise anstelle der realistischen Anwendungslatenz im gesamten Netzwerk an. Abbildung 7 Latenz, die von PNQM für realen Netzwerkverkehr gemeldet wird Im zweiten Beispiel (Abbildung 8) sehen wir den Unterschied zwischen den angegebenen Linkbelastungs - oder Sättigungswerten zwischen einer 5-minütigen durchschnittlichen Ansicht und einer 5-ms-Microburst-Ansicht (BQM kann über Microbursts berichten Bis ungefähr 10-100 Nanosekunden Genauigkeit). Die grüne Linie zeigt, dass die durchschnittliche Auslastung bei 5-Minuten-Mitteln niedrig ist, möglicherweise bis zu 5 Mbitss. Das Dunkelblau-Diagramm zeigt die 5 ms Mikroburst-Aktivität, die zwischen 75 Mbitss und 100 Mbitss, die LAN-Geschwindigkeit, effektiv erreicht. BQM zeigt dieses Granularitätsniveau für alle Anwendungen und es gibt auch klare Bereitstellungsregeln, die es dem Benutzer ermöglichen, diese Microbursts zu steuern oder zu neutralisieren. Abbildung 8: Unterschied zwischen einer 5-Minuten-Durchschnittsanzeige und einer 5-ms-Microburst-Ansicht BQM-Bereitstellung im Trading-Netzwerk Abbildung 9 zeigt eine typische BQM-Implementierung in einem Handelsnetzwerk. Abbildung 9 Typische BQM-Implementierung in einem Trading-Netzwerk BQM kann dann verwendet werden, um diese Arten von Fragen zu beantworten: Sind alle meine Gigabit-LAN-Kernverbindungen für mehr als X Millisekunden gesättigt Ist dies verursacht Verlust Welche Verbindungen würden am meisten von einem Upgrade auf Etherchannel oder profitieren 10 Gigabit-Geschwindigkeiten Was Anwendungsdatenverkehr verursacht die Sättigung meiner 1 Gigabit-Links Ist eines der Marktdaten erleben End-to-End-Verlust Wie viel zusätzliche Latenz der Failover-Rechenzentrum Erfahrung Ist dieser Link richtig dimensioniert, um mit microbursts befassen sind meine Händler Erhalten niedrige Latenz Updates aus der Marktdatenverteilungsschicht Sind sie sehen alle Verzögerungen größer als X Millisekunden In der Lage, diese Fragen einfach und effektiv zu sparen spart Zeit und Geld in den Betrieb des Handelsnetzes. BQM ist ein wichtiges Instrument, um die Sichtbarkeit in Marktdaten und Handelsumgebungen zu erhöhen. Es bietet körnige End-to-End-Latenzmessungen in komplexen Infrastrukturen, die umfangreiche Datenbewegungen erleben. Das effektive Erfassen von Microbursts in Sub-Millisekunden-Ebenen und das Empfangen von Expertenanalysen für ein bestimmtes Ereignis ist von unschätzbarem Wert für den Handel von Architekten. Empfehlungen zur Bereitstellung von intelligenter Bandbreite, wie Sizing und What-If-Analyse, sorgen für mehr Agilität, um auf volatile Marktbedingungen zu reagieren. Da die Explosion des algorithmischen Handels und die zunehmende Nachrichtenrate weiter anhält, bietet BQM in Verbindung mit dem QoS-Tool die Möglichkeit, QoS-Richtlinien zu implementieren, die kritische Handelsanwendungen schützen können. Cisco Financial Services Latency Monitoring-Lösung Cisco und Trading Metrics haben an Latenzüberwachungslösungen für den FIX-Orderflow und die Marktdatenüberwachung zusammengearbeitet. Die Cisco AON-Technologie ist das Fundament für eine neue Klasse von Netzwerk-Embedded-Produkten und - Lösungen, die dazu beitragen, intelligente Netzwerke mit einer Anwendungsinfrastruktur zusammenzuführen, die auf serviceorientierten oder traditionellen Architekturen basiert. Trading Metrics ist ein führender Anbieter von Analytics-Software für Netzwerk-Infrastruktur und Anwendung Latenzüberwachung Zwecke (Tradingmetrics). Die Cisco AON Financial Services Latency Monitoring Solution (FSMS) korrelierte zwei Arten von Ereignissen an der Beobachtungsstelle: Netzwerkereignisse korrelierten direkt mit koinzidenten Anwendungen Nachrichtenhandling Handelsauftragsfluss und passende Marktaktualisierungsereignisse Verwenden von Zeitstempeln, Netzwerk ermöglicht die Echtzeit-Analyse dieser korrelierten Datenströme eine genaue Erkennung von Engpässen in der Infrastruktur, während ein Handel ausgeführt wird oder Marktdaten verteilt werden. Durch die Überwachung und Messung der Latenzzeiten im Zyklus können Finanzunternehmen bessere Entscheidungen darüber treffen, welchen Netzdienst und welcher Vermittler, Markt oder Gegenpartei für die Weiterleitung von Handelsaufträgen ausgewählt wird. Ebenso ermöglicht dieses Wissen einen rationelleren Zugang zu aktualisierten Marktdaten (Börsenkurse, Wirtschaftsnachrichten usw.), die eine wichtige Grundlage für die Initiierung, den Rückzug oder die Verfolgung von Marktchancen darstellen. Die Komponenten der Lösung sind: AON-Hardware in drei Formfaktoren: AON-Netzwerkmodul für Cisco 2600280037003800-Router AON-Blade für die Cisco Catalyst 6500-Serie AON 8340 Appliance-Handelsmetriken Die MampA 2.0-Software, die die Überwachungs - und Alarmierungsanwendung zur Verfügung stellt, zeigt Latenzdiagramme an Ein Armaturenbrett und gibt Warnungen aus, wenn Verlangsamungen auftreten (tradingmetricsTMbrochure. pdf). Abbildung 10 AON-basierte FIX-Latenzüberwachung Cisco IP SLA ist ein integriertes Netzwerkmanagement-Tool in Cisco IOS, das es Routern und Switches ermöglicht, synthetische Verkehrsströme zu generieren, die auf Latenz, Jitter, Paketverlust und andere Kriterien (ciscogoipsla) gemessen werden können ). Zwei Schlüsselkonzepte sind die Quelle des erzeugten Verkehrs und des Ziels. Beide führen einen IP-SLA-Quotienten durch, der die Aufgabe hat, den Steuerverkehr zeitlich abzustimmen, bevor er von dem Ziel gesendet und zurückgesendet wird (für eine Rundreisemessung). Various traffic types can be sourced within IP SLA and they are aimed at different metrics and target different services and applications. The UDP jitter operation is used to measure one-way and round-trip delay and report variations. As the traffic is time stamped on both sending and target devices using the responder capability, the round trip delay is characterized as the delta between the two timestamps. A new feature was introduced in IOS 12.3(14)T, IP SLA Sub Millisecond Reporting, which allows for timestamps to be displayed with a resolution in microseconds, thus providing a level of granularity not previously available. This new feature has now made IP SLA relevant to campus networks where network latency is typically in the range of 300-800 microseconds and the ability to detect trends and spikes (brief trends) based on microsecond granularity counters is a requirement for customers engaged in time-sensitive electronic trading environments. As a result, IP SLA is now being considered by significant numbers of financial organizations as they are all faced with requirements to: Report baseline latency to their users Trend baseline latency over time Respond quickly to traffic bursts that cause changes in the reported latency Sub-millisecond reporting is necessary for these customers, since many campus and backbones are currently delivering under a second of latency across several switch hops. Electronic trading environments have generally worked to eliminate or minimize all areas of device and network latency to deliver rapid order fulfillment to the business. Reporting that network response times are quotjust under one millisecondquot is no longer sufficient the granularity of latency measurements reported across a network segment or backbone need to be closer to 300-800 micro-seconds with a degree of resolution of 100 igrave seconds. IP SLA recently added support for IP multicast test streams, which can measure market data latency. A typical network topology is shown in Figure 11 with the IP SLA shadow routers, sources, and responders. Figure 11 IP SLA Deployment Computing Services Computing services cover a wide range of technologies with the goal of eliminating memory and CPU bottlenecks created by the processing of network packets. Trading applications consume high volumes of market data and the servers have to dedicate resources to processing network traffic instead of application processing. Transport processingAt high speeds, network packet processing can consume a significant amount of server CPU cycles and memory. An established rule of thumb states that 1Gbps of network bandwidth requires 1 GHz of processor capacity (source Intel white paper on IO acceleration inteltechnologyioacceleration306517.pdf ). Intermediate buffer copyingIn a conventional network stack implementation, data needs to be copied by the CPU between network buffers and application buffers. This overhead is worsened by the fact that memory speeds have not kept up with increases in CPU speeds. For example, processors like the Intel Xeon are approaching 4 GHz, while RAM chips hover around 400MHz (for DDR 3200 memory) (source Intel inteltechnologyioacceleration306517.pdf ). Context switchingEvery time an individual packet needs to be processed, the CPU performs a context switch from application context to network traffic context. This overhead could be reduced if the switch would occur only when the whole application buffer is complete. Figure 12 Sources of Overhead in Data Center Servers TCP Offload Engine (TOE)Offloads transport processor cycles to the NIC. Moves TCPIP protocol stack buffer copies from system memory to NIC memory. Remote Direct Memory Access (RDMA)Enables a network adapter to transfer data directly from application to application without involving the operating system. Eliminates intermediate and application buffer copies (memory bandwidth consumption). Kernel bypass Direct user-level access to hardware. Dramatically reduces application context switches. Figure 13 RDMA and Kernel Bypass InfiniBand is a point-to-point (switched fabric) bidirectional serial communication link which implements RDMA, among other features. Cisco offers an InfiniBand switch, the Server Fabric Switch (SFS): ciscoapplicationpdfenusguestnetsolns500c643cdccont0900aecd804c35cb. pdf. Figure 14 Typical SFS Deployment Trading applications benefit from the reduction in latency and latency variability, as proved by a test performed with the Cisco SFS and Wombat Feed Handlers by Stac Research: Application Virtualization Service De-coupling the application from the underlying OS and server hardware enables them to run as network services. One application can be run in parallel on multiple servers, or multiple applications can be run on the same server, as the best resource allocation dictates. This decoupling enables better load balancing and disaster recovery for business continuance strategies. The process of re-allocating computing resources to an application is dynamic. Using an application virtualization system like Data Synapses GridServer, applications can migrate, using pre-configured policies, to under-utilized servers in a supply-matches-demand process (networkworldsupp2005ndc1022105virtual. htmlpage2 ). There are many business advantages for financial firms who adopt application virtualization: Faster time to market for new products and services Faster integration of firms following merger and acquisition activity Increased application availability Better workload distribution, which creates more quothead roomquot for processing spikes in trading volume Operational efficiency and control Reduction in IT complexity Currently, application virtualization is not used in the trading front-office. One use-case is risk modeling, like Monte Carlo simulations. As the technology evolves, it is conceivable that some the trading platforms will adopt it. Data Virtualization Service To effectively share resources across distributed enterprise applications, firms must be able to leverage data across multiple sources in real-time while ensuring data integrity. With solutions from data virtualization software vendors such as Gemstone or Tangosol (now Oracle), financial firms can access heterogeneous sources of data as a single system image that enables connectivity between business processes and unrestrained application access to distributed caching. The net result is that all users have instant access to these data resources across a distributed network (gridtoday030210101061.html ). This is called a data grid and is the first step in the process of creating what Gartner calls Extreme Transaction Processing (XTP) (gartnerDisplayDocumentrefgsearchampid500947 ). Technologies such as data and applications virtualization enable financial firms to perform real-time complex analytics, event-driven applications, and dynamic resource allocation. One example of data virtualization in action is a global order book application. An order book is the repository of active orders that is published by the exchange or other market makers. A global order book aggregates orders from around the world from markets that operate independently. The biggest challenge for the application is scalability over WAN connectivity because it has to maintain state. Todays data grids are localized in data centers connected by Metro Area Networks (MAN). This is mainly because the applications themselves have limitsthey have been developed without the WAN in mind. Figure 15 GemStone GemFire Distributed Caching Before data virtualization, applications used database clustering for failover and scalability. This solution is limited by the performance of the underlying database. Failover is slower because the data is committed to disc. With data grids, the data which is part of the active state is cached in memory, which reduces drastically the failover time. Scaling the data grid means just adding more distributed resources, providing a more deterministic performance compared to a database cluster. Multicast Service Market data delivery is a perfect example of an application that needs to deliver the same data stream to hundreds and potentially thousands of end users. Market data services have been implemented with TCP or UDP broadcast as the network layer, but those implementations have limited scalability. Using TCP requires a separate socket and sliding window on the server for each recipient. UDP broadcast requires a separate copy of the stream for each destination subnet. Both of these methods exhaust the resources of the servers and the network. The server side must transmit and service each of the streams individually, which requires larger and larger server farms. On the network side, the required bandwidth for the application increases in a linear fashion. For example, to send a 1 Mbps stream to 1000recipients using TCP requires 1 Gbps of bandwidth. IP multicast is the only way to scale market data delivery. To deliver a 1 Mbps stream to 1000 recipients, IP multicast would require 1 Mbps. The stream can be delivered by as few as two serversone primary and one backup for redundancy. There are two main phases of market data delivery to the end user. In the first phase, the data stream must be brought from the exchange into the brokerages network. Typically the feeds are terminated in a data center on the customer premise. The feeds are then processed by a feed handler, which may normalize the data stream into a common format and then republish into the application messaging servers in the data center. The second phase involves injecting the data stream into the application messaging bus which feeds the core infrastructure of the trading applications. The large brokerage houses have thousands of applications that use the market data streams for various purposes, such as live trades, long term trending, arbitrage, etc. Many of these applications listen to the feeds and then republish their own analytical and derivative information. For example, a brokerage may compare the prices of CSCO to the option prices of CSCO on another exchange and then publish ratings which a different application may monitor to determine how much they are out of synchronization. Figure 16 Market Data Distribution Players The delivery of these data streams is typically over a reliable multicast transport protocol, traditionally Tibco Rendezvous. Tibco RV operates in a publish and subscribe environment. Each financial instrument is given a subject name, such as CSCO. last. Each application server can request the individual instruments of interest by their subject name and receive just a that subset of the information. This is called subject-based forwarding or filtering. Subject-based filtering is patented by Tibco. A distinction should be made between the first and second phases of market data delivery. The delivery of market data from the exchange to the brokerage is mostly a one-to-many application. The only exception to the unidirectional nature of market data may be retransmission requests, which are usually sent using unicast. The trading applications, however, are definitely many-to-many applications and may interact with the exchanges to place orders. Figure 17 Market Data Architecture Design Issues Number of GroupsChannels to Use Many application developers consider using thousand of multicast groups to give them the ability to divide up products or instruments into small buckets. Normally these applications send many small messages as part of their information bus. Usually several messages are sent in each packet that are received by many users. Sending fewer messages in each packet increases the overhead necessary for each message. In the extreme case, sending only one message in each packet quickly reaches the point of diminishing returnsthere is more overhead sent than actual data. Application developers must find a reasonable compromise between the number of groups and breaking up their products into logical buckets. Consider, for example, the Nasdaq Quotation Dissemination Service (NQDS). The instruments are broken up alphabetically: This approach allows for straight forward networkapplication management, but does not necessarily allow for optimized bandwidth utilization for most users. A user of NQDS that is interested in technology stocks, and would like to subscribe to just CSCO and INTL, would have to pull down all the data for the first two groups of NQDS. Understanding the way users pull down the data and then organize it into appropriate logical groups optimizes the bandwidth for each user. In many market data applications, optimizing the data organization would be of limited value. Typically customers bring in all data into a few machines and filter the instruments. Using more groups is just more overhead for the stack and does not help the customers conserve bandwidth. Another approach might be to keep the groups down to a minimum level and use UDP port numbers to further differentiate if necessary. The other extreme would be to use just one multicast group for the entire application and then have the end user filter the data. In some situations this may be sufficient. Intermittent Sources A common issue with market data applications are servers that send data to a multicast group and then go silent for more than 3.5 minutes. These intermittent sources may cause trashing of state on the network and can introduce packet loss during the window of time when soft state and then hardware shorts are being created. PIM-Bidir or PIM-SSM The first and best solution for intermittent sources is to use PIM-Bidir for many-to-many applications and PIM-SSM for one-to-many applications. Both of these optimizations of the PIM protocol do not have any data-driven events in creating forwarding state. That means that as long as the receivers are subscribed to the streams, the network has the forwarding state created in the hardware switching path. Intermittent sources are not an issue with PIM-Bidir and PIM-SSM. Null Packets In PIM-SM environments a common method to make sure forwarding state is created is to send a burst of null packets to the multicast group before the actual data stream. The application must efficiently ignore these null data packets to ensure it does not affect performance. The sources must only send the burst of packets if they have been silent for more than 3 minutes. A good practice is to send the burst if the source is silent for more than a minute. Many financials send out an initial burst of traffic in the morning and then all well-behaved sources do not have problems. Periodic Keepalives or Heartbeats An alternative approach for PIM-SM environments is for sources to send periodic heartbeat messages to the multicast groups. This is a similar approach to the null packets, but the packets can be sent on a regular timer so that the forwarding state never expires. S, G Expiry Timer Finally, Cisco has made a modification to the operation of the S, G expiry timer in IOS. There is now a CLI knob to allow the state for a S, G to stay alive for hours without any traffic being sent. The (S, G) expiry timer is configurable. This approach should be considered a workaround until PIM-Bidir or PIM-SSM is deployed or the application is fixed. RTCP Feedback A common issue with real time voice and video applications that use RTP is the use of RTCP feedback traffic. Unnecessary use of the feedback option can create excessive multicast state in the network. If the RTCP traffic is not required by the application it should be avoided. Fast Producers and Slow Consumers Today many servers providing market data are attached at Gigabit speeds, while the receivers are attached at different speeds, usually 100Mbps. This creates the potential for receivers to drop packets and request re-transmissions, which creates more traffic that the slowest consumers cannot handle, continuing the vicious circle. The solution needs to be some type of access control in the application that limits the amount of data that one host can request. QoS and other network functions can mitigate the problem, but ultimately the subscriptions need to be managed in the application. Tibco Heartbeats TibcoRV has had the ability to use IP multicast for the heartbeat between the TICs for many years. However, there are some brokerage houses that are still using very old versions of TibcoRV that use UDP broadcast support for the resiliency. This limitation is often cited as a reason to maintain a Layer 2 infrastructure between TICs located in different data centers. These older versions of TibcoRV should be phased out in favor of the IP multicast supported versions. Multicast Forwarding Options PIM Sparse Mode The standard IP multicast forwarding protocol used today for market data delivery is PIM Sparse Mode. It is supported on all Cisco routers and switches and is well understood. PIM-SM can be used in all the network components from the exchange, FSP, and brokerage. There are, however, some long-standing issues and unnecessary complexity associated with a PIM-SM deployment that could be avoided by using PIM-Bidir and PIM-SSM. These are covered in the next sections. The main components of the PIM-SM implementation are: PIM Sparse Mode v2 Shared Tree (spt-threshold infinity) A design option in the brokerage or in the exchange. Algorithmic Trading System Architecture Algorithmic automated trading or Algorithmic Trading has been at the centre-stage of the trading world for a few years now. The percentage of volumes attributed to this form of trading has been increasing in the past few years. As a result, it has become a highly competitive market that is heavily dependent on technology. Consequently, the basic architecture has undergone major changes over the past decade and continues to do so. It is today a necessity to innovate on technology in order to compete in the world of algorithmic trading, making it a hotbed for advances in computer and network technologies. Traditional Architecture Any trading system, conceptually, is nothing more than a computational block that interacts with the exchange on two different streams. Receives market data Sends order requests and receives replies from the exchange. The market data that is received typically informs the system of the latest orderbook. It might contain some additional information like the volume traded so far, the last traded price and quantity for a scrip. However, to make a decision on the data, the trader might need to look at old values or derive certain parameters from history. To cater to that, a conventional system would have a historical database to store the market data and tools to use that database. Analysis would also involve a study of the past trades by the trader. Hence another database for storing the trading decisions as well. Last, but not the least, a GUI interface for the trader to view all this information on the screen. The entire system can now be broken down into The exchange(s) the external world The server Market Data receive Store market data Store orders generated by the user Application Take inputs from the user including the trading decisions Interface for viewing the information including the data and orders An order manager sending orders to the exchange. New Architecture The traditional architecture could not scale up to the needs and demands of Automated trading with DMA. The latency between origin of the event to the order generation went beyond the dimension of human control and entered the realms of milliseconds and microseconds. So the tools to handle market data and analyse it needed to adapt accordingly. Order management also needs to be more robust and capable of handling many more orders per second. Since the time frame is so small compared to human reaction time, risk management also needs to handle orders in real time and in a completely automated way. For example, even if the reaction time for an order is 1 millisecond (which is a lot compared to the latencies we see today), the system is still capable of making 1000 trading decisions in a single second. This means each of these 1000 trading decisions needs to go through the Risk management within the same second to reach the exchange. This is just a problem of complexity. Since the architecture now involves automated logic, 100 traders can now be replaced by a single system. This adds scale to the problem. So each of the logical units generates 1000 orders and 100 such units mean 100,000 orders every second. This means that the decision-making and order sending part needs to be much faster than the market data receiver in order to match the rate of data. Hence, the level of infrastructure that this module demands would need to be far superior compared to that of a traditional system (discussed in the previous section). Hence the engine which runs the logic of decision making, also known as the Complex Event Processing engine, or CEP, moved from within the application to the server. The Application layer, now, is little more than a user interface for viewing and providing parameters to the CEP. The problem of scaling also leads to an interesting situation. Let us say 100 different logics are being run over a single market data event (as discussed in the earlier example). However there might be common pieces of complex calculations that need to be run for most of the 100 logic units. For example, calculation of greeks for options. If each logic were to function independently, each unit would do the same greek calculation which would unnecessarily use up processor resources. In order to optimize on the redundancy of calculation, complex redundant calculations are typically hived off into a separate calculation engine which provides the greeks as an input to the CEP. Although the application layer is primarily a view, some of the risk checks (which are now resource hungry operations owing the problem of scale), can be offloaded to the application layer, especially those that are to do with sanity of user inputs like fat finger errors. The rest of the risk checks are performed now by a separate Risk Management System (RMS) within the Order Manager (OM), just before releasing an order. The problem of scale also means that where earlier there were 100 different traders managing their risk, there is now only one RMS system to manage risk across all logical unitsstrategies. However, some risk checks may be particular to certain strategies and some might need to be done across all strategies. Hence the RMS itself involves, strategy level RMS (SLRMS) and global RMS (GRMS). It might also involve a UI to view the SLRMS and GRMS. Emergence of protocols With innovations come necessities. Since the new architecture was capable of scaling to many strategies per server, the need to connect to multiple destinations from a single server emerged. So the order manager hosted several adaptors to send orders to multiple destinations and receive data from multiple exchanges. Each adaptor acts as an interpreter between the protocol that is understood by the exchange and the protocol of communication within the system. Multiple exchanges mean multiple adaptors. However, to add a new exchange to the system, a new adapter has to be designed and plugged into the architecture since each exchange follows its only protocol that is optimized for features that that exchange provides. To avoid this hassle of adapter addition, standard protocols have been designed. The most prominent amongst them is the FIX (Financial Information Exchange) protocol. This not only makes it manageable to connect to different destinations on the fly, but also drastically reduces to the go to market when it comes to connecting with a new destination. The presence of standard protocols makes it easy to integrate with third party vendors, for analytics or market data feeds as well. As a result, the market becomes very efficient as integrating with a new destinationvendor is no more a constraint. In addition, simulation becomes very easy as receiving data from the real market and sending orders to a simulator is just a matter of using the FIX protocol to connect to a simulator. The simulator itself can be built in-house or procured from a third party vendor. Similarly recorded data can just be replayed with the adaptors being agnostic to whether the data is being received from the live market or from a recorded data set. Emergence of low latency architectures With the building blocks of an algorithmic trading system in place, the strategies optimized on the ability to process huge amounts of data in real time and make quick trading decisions. But with the advent of standard communication protocols like FIX, the technology entry barrier to setup an algorithmic trading desk, became lower and hence more competitive. As servers got more memory and higher clock frequencies, the focus shifted towards reducing the latency for decision making. Over time, reducing latency became a necessity for many reasons like: Strategy makes sense only in a low latency environment Survival of the fittest competitors pick you off if you are not fast enough The problem however is that latency is really an overarching term that encompasses several different delays. To quantify all of them in one generic term may not usually make much sense. Although it is very easily understood, it is quite difficult to quantify. It therefore becomes increasingly important how the problem of reducing latency is approached. If we look at the basic life cycle, A market data packet is published by the exchange The packet travels over the wire The packet arrives at a router on the server side. The router forwards the packet over the network on the server side. The packet arrives on the Ethernet port of the server. Depending whether this is UDPTCP processing takes place and the packet stripped of its headers and trailers makes its way to the memory of the adaptor. The adaptor then parses the packet and converts it into a format internal to the algorithmic trading platform This packet now travels through the several modules of the system CEP, tick store, etc. The CEP analyses and sends an order request The order request again goes through the reverse of the cycle as the market data packet. High latency at any of these steps ensures a high latency for the entire cycle. Hence latency optimization usually starts with the first step in this cycle that is in our control i. e, the packet travels over the wire. The easiest thing to do here would be to shorten the distance to the destination by as much as possible. Colocations are facilities provided by exchanges to host the trading server in close proximity to the exchange. The following diagram illustrates the gains that can be made by cutting the distance. For any kind of a high frequency strategy involving a single destination, Colocation has become a defacto must. However, strategies that involve multiple destinations need some careful planning. Several factors like, the time taken by the destination to reply to order requests and its comparison with the ping time between the two destinations must be considered before making such a decision. The decision may be dependent on the nature of the strategy as well. Network latency is usually the first step in reducing overall latency of an algorithmic trading system. However there are plenty of other places where the architecture can be optimized. Propagation latency time taken to send the bits along the wire. Constrained by speed of light of course. Several optimizations have been introduced to reduce the propagation latency apart from reducing the physical distance. For example, estimated roundtrip time for an ordinary cable between Chicago and New York is 13.1 milliseconds. Spread networks, in October 2012, announced latency improvements. Bringing the estimated roundtrip time to 12.98 milliseconds. Microwave communication was adopted further by firms such as Tradeworx bringing the estimated roundtrip time to 8.5 milliseconds. Note that the theoretical minimum is about 7.5 milliseconds. Continuing innovations are pushing the boundaries of science and fast reaching the theoretical limit of speed of light. Latest developments in laser communication, earlier adopted in defence technologies, has further shaved off an already thinning latency by nanoseconds over short distances. Network processing latency introduced by routers, switches, etc. The next level of optimization in the architecture of an algorithmic trading system would be in the number of hops that a packet would take to travel from point A to point B. A hop is defined as one portion of the path between source and destination during which a packet doesnt pass through a physical device like a router or a switch. For example, a packet could travel the same distance via two different paths. But It may have two hops on the first path versus 3 hops on the second. Assuming the propagation delay is the same the routers and switches each introduce their own latency and usually as a thumb rule, more the hops more is the latency added. Network processing latency may also be affected by what we refer to as microbursts. Microbursts are defined as sudden increase in rate of data transfer which may not necessarily affect the average rate of data transfer. Since algorithmic trading systems are rule based, all such systems will react to the same event in the same way. As a result, a lot of participating systems may send orders leading to a sudden flurry of data transfer between the participants and the destination leading to a microburst. The following diagram represents what a microburst is. The first figure shows a 1 second view of the data transfer rate. We can see that the average rate is well below the bandwidth available of 1Gbps. However if dive deeper and look at the seconds image (the 5 millisecond view), we see that the transfer rate has spiked above the available bandwidth several times each second. As a result the packet buffers on the network stack, both in the network endpoints and routers and switches may overflow. To avoid this, typically a bandwidth that is much higher than the observed average rate is usually allocated for an algorithmic trading system. Serialization latency time taken to pull the bits on and off the wire. A packet size of 1500 bytes transmitted on a T1 line (1,544,000 bps) would produce a serialization delay of about 8 milliseconds. However the same 1500 byte packet using a 56K modem (57344bps) would take 200 milliseconds. A 1G Ethernet line would reduce this latency to about 11 microseconds. Interrupt latency introduced by interrupts while receiving the packets on a server. Interrupt latency is defined as the time elapsed between when an interrupt is generated to when the source of the interrupt is serviced. When is an interrupt generated Interrupts are signals to the processor emitted by hardware or software indicating that an event needs immediate attention. The processor in turn responds by suspending its current activity, saving its state and handling the interrupt. Whenever a packet is received on the NIC, an interrupt is sent to handle the bits that have been loaded into the receive buffer of the NIC. The time taken to respond to this interrupt not only affects the processing of the newly arriving payload, but also the latency of the existing processes on the processor. Solarflare introduced open onload in 2011, which implements a technique known as kernel bypass, where the processing of the packet is not left to the operating system kernel but to the userspace itself. The entire packet is directly mapped into the user space by the NIC and is processed there. As a result, interrupts are completely avoided. As a result the rate of processing each packet is accelerated. The following diagram clearly demonstrates the advantages of kernel bypass. Application latency time taken by the application to process. This is dependent on the several packets, the processing allocated to the application logic, the complexity of the calculation involved, programming efficiency etc. Increasing the number of processors on the system would in general reduce the application latency. Same is the case with increased clock frequency. A lot of algorithmic trading systems take advantage of dedicating processor cores to essential elements of the application like the strategy logic for eg. This avoids the latency introduced by the process switching between cores. Similarly, if the programming of the strategy has been done keep in mind the cache sizes and locality of memory access, then there would be a lot of memory cache hits resulting further reduction of latency. To facilitate this, a lot of system use very low level programming languages to optimize the code to the specific architecture of the processors. Some firms have even gone to the extent of burning complex calculations onto hardware using Fully Programmable Gate Arrays (FPGA). With increasing complexity comes increasing cost and the following diagram aptly illustrates this. Levels of sophistication The world of high frequency algorithmic trading has entered an era of intense competition. With each participant adopting new methods of ousting the competition, technology has progressed by leaps and bounds. Modern day algorithmic trading architectures are quite complex compared to their early stage counterparts. Accordingly, advanced systems are more expensive to build both in terms of time and money.
Comments
Post a Comment